The transcription factor SOX9 is frequently amplified in diverse advanced-stage human tumors. Its stability has been shown to be tightly controlled by ubiquitination-dependent proteasome degradation. However, the exact underlying molecular mechanisms remain unclear. This work reports that SOX9 protein abundance is regulated by the Cullin 3-based ubiquitin ligase KEAP1 via proteasome-mediated degradation. Loss-of-function mutations in KEAP1 compromise polyubiquitination-mediated SOX9 degradation, leading to increased protein levels, which facilitate tumorigenesis. Moreover, the loss of critical ubiquitination residues in SOX9, by either a SOX9 (ΔK2) truncation or K249R mutation, leads to elevated protein stability. Furthermore, it is shown that the KEAP1/SOX9 interaction is modulated by CKIγ-mediated phosphorylation. Importantly, it is demonstrated that DNA damage drugs, topoisomerase inhibitors, can trigger CKI activation to restore the KEAP1/SOX9 interaction and its consequent degradation. Collectively, herein the findings uncover a novel molecular mechanism through which SOX9 protein stability is negatively regulated by KEAP1 to control tumorigenesis. Thus, these results suggest that mitigating SOX9 resistance to KEAP1-mediated degradation can represent a novel therapeutic strategy for cancers with KEAP1 mutations.
Keywords: CKIγ; Cullin 3; DNA damage; KEPA1; SOX9; mutations.
© 2020 The Authors. Published by Wiley‐VCH GmbH.