Objective: Determination of appropriate endoscopy sedation strategy is an important preprocedural consideration. To address manual workflow gaps that lead to sedation-type order errors at our institution, we designed and implemented a clinical decision support system (CDSS) to review orders for patients undergoing outpatient endoscopy.
Materials and methods: The CDSS was developed and implemented by an expert panel using an agile approach. The CDSS queried patient-specific historical endoscopy records and applied expert consensus-derived logic and natural language processing to identify possible sedation order errors for human review. A retrospective analysis was conducted to evaluate impact, comparing 4-month pre-pilot and 12-month pilot periods.
Results: 22 755 endoscopy cases were included (pre-pilot 6434 cases, pilot 16 321 cases). The CDSS decreased the sedation-type order error rate on day of endoscopy (pre-pilot 0.39%, pilot 0.037%, Odds Ratio = 0.094, P-value < 1e-8). There was no difference in background prevalence of erroneous orders (pre-pilot 0.39%, pilot 0.34%, P = .54).
Discussion: At our institution, low prevalence and high volume of cases prevented routine manual review to verify sedation order appropriateness. Using a cohort-enrichment strategy, a CDSS was able to reduce number of chart reviews needed per sedation-order error from 296.7 to 3.5, allowing for integration into the existing workflow to intercept rare but important ordering errors.
Conclusion: A workflow-integrated CDSS with expert consensus-derived logic rules and natural language processing significantly reduced endoscopy sedation-type order errors on day of endoscopy at our institution.
Keywords: agile; decision support systems; endoscopy; sedation; workflow.
© The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: [email protected].