This study presents a high-throughput (HTP) micronucleus assay in multi-well plates with an automated evaluation for risk assessment applications. The evaluation of genotoxicity via the micronucleus assays according to international guidelines ISO 21427-2 with Chinese hamster (Cricetulus griseus) V79 cells was the starting point to develop our methodology. A drawback of this assay is that it is very time consuming and cost intensive. Our HTP micronucleus assay in a 48-well plate format allows for the simultaneous assessment of five different sample-concentrations with additional positive, negative and solvent controls with six technical replicates each within a quarter of the time required for the equivalent evaluation using the traditional slide method. In accordance with the 3R principle, animal compounds should be replaced with animal-free alternatives. However, traditional cell culture-based methods still require animal derived compounds like rat-liver derived S9-fraction, which is used to simulate the mammalian metabolism in in vitro assays that do show intrinsic metabolization capabilities. In the present study, a recently developed animal-free biotechnological alternative (ewoS9R) was investigated in the new high-throughput micronucleus assay. In total, 12 different mutagenic or genotoxic chemicals were investigated to assess the potential use of the animal-free metabolization system (ewoS9R) in comparison to a common rat-derived product. Out of the 12 compounds, one compound did not induce micronuclei in any treatment and 2 substances showed a genotoxic potential without the need for a metabolization system. EwoS9R demonstrated promising potential for future applications as it shows comparable results to the rat-derived S9 for 6 of the 9 pro-genotoxic substances tested. The remaining 3 substances (2-Acetamidofluorene, Benzo[a]pyrene, Cyclophosphamide) were only metabolized by rat-derived S9. A potential explanation is that ewoS9R was investigated with an approx. 10-fold lower enzyme concentration and was only optimized for CYP1A metabolization that may be improved with a modified production procedure. Future applications of ewoS9R go beyond the micronucleus assay, but further research is necessary.
Keywords: Animal-free alternatives; Genotoxicity; High-throughput; Metabolization; Micronucleus assay; V79.
Copyright © 2020 Elsevier B.V. All rights reserved.