Microstructured functional materials such as microfibers and microparticles are widely used for a myriad of applications. Precise manipulation of the functional components and structure is important for the microstructured functional materials to achieve desired functions for advanced application. This review highlights the recent progress on the controllable microfluidic fabrication of microstructured functional materials from liquid templates. First, microfluidic strategies for controllable generation of liquid templates including laminar jets and emulsion droplets are introduced. Then, strategies for fabricating microfibers and microparticles with diverse structures and advanced functions from the liquid templates are highlighted. These strategies mainly focus on precisely engineering the functional components and microstructures of the microfibers and microparticles by tailoring those of their liquid templates to achieve desired advanced functions. Finally, future development of microfluidic techniques for industrial-scale production of the microstructured functional materials is discussed.
Copyright © 2020 Author(s).