Background: During mammalian early embryogenesis, expression and epigenetic heterogeneity emerge before the first cell fate determination, but the programs causing such determinate heterogeneity are largely unexplored.
Results: Here, we present MethylTransition, a novel DNA methylation state transition model, for characterizing methylation changes during one or a few cell cycles at single-cell resolution. MethylTransition involves the creation of a transition matrix comprising three parameters that represent the probabilities of DNA methylation-modifying activities in order to link the methylation states before and after a cell cycle. We apply MethylTransition to single-cell DNA methylome data from human pre-implantation embryogenesis and elucidate that the DNA methylation heterogeneity that emerges at promoters during this process is largely an intrinsic output of a program with unique probabilities of DNA methylation-modifying activities. Moreover, we experimentally validate the effect of the initial DNA methylation on expression heterogeneity in pre-implantation mouse embryos.
Conclusions: Our study reveals the programmed DNA methylation heterogeneity during human pre-implantation embryogenesis through a novel mathematical model and provides valuable clues for identifying the driving factors of the first cell fate determination during this process.
Keywords: DNA methylation; First cell fate determination; Heterogeneity.