Background: White matter hyperintensities (WMH) are estimated to occur in greater than 63% of older adults over the age of 60 years. WMH identified in the T2-weighted FLAIR images can be combined with T1-weighted images to enhance individualized current flow models of older adults by accounting for the presence of WMH and its effects on delivered tES current in the aging brain.
Methods: Individualized head models were derived from T1-weighted images of 130 healthy older adults (mean = 71 years). Lesions segmented from FLAIR acquisition were added to individualized models. Current densities were computed in the brain and compared between models with and without lesions.
Main results: Integrating WMH into the models resulted in an overall decrease (up to 7%) in median current densities in the brain outside lesion regions. Changes in current density and total lesion volume was positively correlated (R2 = 0.31, p < 0.0001).
Conclusions: Incorporating WMH into individualized models may increase the accuracy of predicted tES current flow in the aging brain.
Keywords: Aging; Finite element model; White matter hyperintensity; tES.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.