Efficient local energy evaluation for multi-Slater wave functions in orbital space quantum Monte Carlo

J Chem Phys. 2020 Nov 21;153(19):194108. doi: 10.1063/5.0025055.

Abstract

We present an algorithm for calculating the local energy of a multi-Slater wave function in orbital space quantum Monte Carlo (QMC). Recent developments in selected configuration interaction methods have led to increased interest in using multi-Slater trial wave functions in various QMC methods. For an ab initio Hamiltonian, our algorithm has a cost scaling of O(n5 + nc), as opposed to the O(n4nc) scaling of existing orbital space algorithms, where n is the system size and nc is the number of configurations in the wave function. We present our method using variational Monte Carlo calculations with the Jastrow multi-Slater wave function, although the formalism should be applicable for auxiliary field QMC. We apply it to polyacetylene and demonstrate the possibility of using a much larger number of configurations than possible using existing methods.