Aim: We sought to examine the association of epicardial adipose tissue (EAT) quantified on chest computed tomography (CT) with the extent of pneumonia and adverse outcomes in patients with coronavirus disease 2019 (COVID-19).
Methods: We performed a post-hoc analysis of a prospective international registry comprising 109 consecutive patients (age 64 ± 16 years; 62% male) with laboratory-confirmed COVID-19 and noncontrast chest CT imaging. Using semi-automated software, we quantified the burden (%) of lung abnormalities associated with COVID-19 pneumonia. EAT volume (mL) and attenuation (Hounsfield units) were measured using deep learning software. The primary outcome was clinical deterioration (intensive care unit admission, invasive mechanical ventilation, or vasopressor therapy) or in-hospital death.
Results: In multivariable linear regression analysis adjusted for patient comorbidities, the total burden of COVID-19 pneumonia was associated with EAT volume (β = 10.6, p = 0.005) and EAT attenuation (β = 5.2, p = 0.004). EAT volume correlated with serum levels of lactate dehydrogenase (r = 0.361, p = 0.001) and C-reactive protein (r = 0.450, p < 0.001). Clinical deterioration or death occurred in 23 (21.1%) patients at a median of 3 days (IQR 1-13 days) following the chest CT. In multivariable logistic regression analysis, EAT volume (OR 5.1 [95% CI 1.8-14.1] per doubling p = 0.011) and EAT attenuation (OR 3.4 [95% CI 1.5-7.5] per 5 Hounsfield unit increase, p = 0.003) were independent predictors of clinical deterioration or death, as was total pneumonia burden (OR 2.5, 95% CI 1.4-4.6, p = 0.002), chronic lung disease (OR 1.3 [95% CI 1.1-1.7], p = 0.011), and history of heart failure (OR 3.5 [95% 1.1-8.2], p = 0.037).
Conclusions: EAT measures quantified from chest CT are independently associated with extent of pneumonia and adverse outcomes in patients with COVID-19, lending support to their use in clinical risk stratification.
Keywords: COVID-19; Computed tomography; Epicardial adipose tissue; SARS-CoV-2.
Copyright © 2020 Elsevier Inc. All rights reserved.