This review presents a modern perspective on dynamical systems in the context of current goals and open challenges. In particular, our review focuses on the key challenges of discovering dynamics from data and finding data-driven representations that make nonlinear systems amenable to linear analysis. We explore various challenges in modern dynamical systems, along with emerging techniques in data science and machine learning to tackle them. The two chief challenges are (1) nonlinear dynamics and (2) unknown or partially known dynamics. Machine learning is providing new and powerful techniques for both challenges. Dimensionality reduction methods are used for projecting dynamical methods in reduced form, and these methods perform computational efficiency on real-world data. Data-driven models drive to discover the governing equations and give laws of physics. The identification of dynamical systems through deep learning techniques succeeds in inferring physical systems. Machine learning provides advanced new and powerful algorithms for nonlinear dynamics. Advanced deep learning methods like autoencoders, recurrent neural networks, convolutional neural networks, and reinforcement learning are used in modeling of dynamical systems.
Keywords: Deep learning; Dimensionality reduction; Dynamic mode decomposition; Dynamical systems; Machine learning.