Background: Circular RNA (circRNA) is emerging as an important player in human diseases, especially cancer. In our previous study, we identified a series of deregulated circRNAs in hepatocellular carcinoma (HCC) by performing circRNA microarray expression profile. Here, we aimed to explore the role of circ-LRIG3 (hsa_circ_0027345) in HCC.
Methods: qRT-PCR and western blot were used to asses gene and protein expression, respectively. CCK-8, EdU and Transwell assays were used to detect cell proliferation, migration and invasion. GSEA software was applied to analyze the pathway related to circ-LRIG3. Co-IP, RIP and ChIP assays were used to identify the positive feedback axis of circ-LRIG3/EZH2/STAT3. Animal study was carried to test the role of circ-LRIG3 in vivo.
Results: Circ-LRIG3 was notably upregulated in HCC and promoted HCC cell proliferation, migration, invasion and reduced apoptosis. Circ-LRIG3 formed a ternary complex with EZH2 and STAT3, facilitating EZH2-induced STAT3 methylation and subsequent phosphorylation, resulting in the activation of STAT3 signaling. In turn, activated STAT3 could directly bind to circ-LRIG3 promoter to increase circ-LRIG3 transcription activity, thus forming a positive feedback loop. The animal models showed that exogenous expression of circ-LRIG3 enhanced tumorigenicity and metastasis in vivo, whereas these effects were blocked after treatment with C188-9, a specific STAT3 small-molecule inhibitor. Clinically, high circ-LRIG3 was closely linked with aggressive clinicopathological features and was identified as an independent risk prognostic factor of overall survival. Importantly, plasma circ-LRIG3 was found to be a highly sensitive and specific non-invasive diagnostic indicator for HCC.
Conclusions: Our study reveals the carcinogenic role of circ-LRIG3 in HCC, which may provide a new therapeutic target for HCC patients.
Keywords: Biomarker; Circular RNA; Hepatocellular carcinoma; Molecular interaction; STAT3 signaling.