Background: Hypertensive left ventricular hypertrophy is associated with the risk of heart failure, coronary heart disease and cerebrovascular disease. Although sacubitril/valsartan (SAC/VAL), a first-in-class angiotensin receptor neprilysin inhibitor, reduces the risks of death and hospitalization for patients with heart failure, its mechanism of action is not fully understood. We hypothesized that SAC/VAL is superior to other conventional drugs in reducing cardiac hypertrophy.
Methods: Male C57BL/6J mice were implanted with an osmotic pump containing angiotensin II (Ang II). After 7 days of Ang II infusion, mice were also treated with either SAC/VAL, valsartan, enalapril or vehicle alone each day for 2 weeks. Blood pressure measurement was done weekly, and echocardiography was performed before and 3 weeks after infusion of Ang II. Histological analyses were done using extracted heart to investigate cardiac hypertrophy and fibrosis.
Results: Ang II markedly elevated blood pressures in all of the treatment groups, and there were no differences in the degree of blood pressure reduction among the SAC/VAL-, valsartan- and enalapril-treated groups. Echocardiography showed that SAC/VAL significantly suppressed the increase in left ventricular (LV) wall thickness and tended to decrease LV mass. In a histological analysis, SAC/VAL inhibited Ang II-induced cardiomyocyte hypertrophy, and individual cardiomyocytes in the SAC/VAL group were smaller than those in the valsartan and enalapril groups. Although previous studies using animal models of heart failure have indicated that SAC/VAL attenuates cardiac fibrosis, we found no supporting evidence in this setting.
Conclusions: SAC/VAL, valsartan and enalapril all attenuated cardiomyocyte hypertrophy in a mouse model of Ang II-induced cardiac hypertrophy. Of note, SAC/VAL most strongly suppressed hypertrophy in spite of similar blood pressure-lowering effects as valsartan and enalapril. The present study suggests that SAC/VAL may have a beneficial effect on the early stage of hypertensive heart disease.
Keywords: ARNI; Hypertension; Hypertrophy; Myocytes; Sacubitril.
Copyright 2020, Tashiro et al.