Background: Deep brain stimulation (DBS) is an effective surgical treatment for movement disorders. Early versions of implantable systems delivered stimulation with constant voltage (CV); however, advances in available and newer platforms have permitted programming in constant current (CC). From a treatment management perspective, there are theoretical advantages of CC stimulation. In this case series, we present clinical evidence supporting the maintenance of current regardless of changes to impedance.
Materials and methods: This case series included 3 patients with Parkinson's disease status post-bilateral subthalamic nucleus DBS. Patients in this series self-reported intermittent diplopia with pressure applied to the scalp. Patients were subsequently examined and converted from CV to CC and re-examined. Impedances were checked prior to and after conversion from CV to CC as well as while applying pressure to the scalp that induced the adverse effects.
Results: Across patients, we observed that compression of the scalp overlying the connector, while patients were maintained in CV, consistently and objectively induced unilateral adduction of an eye. In addition, during scalp compression, while in CV, impedance was reduced, which would increase current delivery. Converting the patients to CC stimulation without changing other stimulation parameters eliminated diplopia and objective findings of eye deviation with compression of the scalp overlying the hardware despite changes in impedance.
Conclusions: In this case series, we provide clinical support for the principal differences between CV and CC stimulation.
Keywords: Constant current; Constant voltage; Impedance.
© 2020 S. Karger AG, Basel.