To develop imaging and therapeutic agents, antibodies are often conjugated randomly to a chelator/radioisotope or drug using a primary amine (NH2) of lysine or sulfhydryl (SH) of cysteine. Random conjugation to NH2 or SH groups can require extreme conditions and may affect target recognition/binding and must therefore be tested. In the present study, nimotuzumab was site-specifically labeled using ∆N-SpyCatcher/SpyTag with different chelators and radiometals. Nimotuzumab is a well-tolerated anti-EGFR antibody with low skin toxicities. First, ΔN-SpyCatcher was reduced using tris(2-carboxyethyl)phosphine (TCEP), which was followed by desferoxamine-maleimide (DFO-mal) conjugation to yield a reactive ΔN-SpyCatcher-DFO. The ΔN-SpyCatcher-DFO was reacted with nimotuzumab-SpyTag to obtain stable nimotuzumab-SpyTag-∆N-SpyCatcher-DFO. Radiolabeling was performed with 89Zr, and the conjugate was used for the in vivo microPET imaging of EGFR-positive MDA-MB-468 xenografts. Similarly, ∆N-SpyCatcher was conjugated to an eighteen-membered macrocyclic chelator macropa-maleimide and used to radiolabel nimotuzumab-SpyTag with actinium-225 (225Ac) for in vivo radiotherapy studies. All constructs were characterized using biolayer interferometry, flow cytometry, radioligand binding assays, HPLC, and bioanalyzer. MicroPET/CT imaging showed a good tumor uptake of 89Zr-nimotuzumab-SpyTag-∆N-SpyCatcher with 6.0 ± 0.6%IA/cc (n = 3) at 48 h post injection. The EC50 of 225Ac-nimotuzumab-SpyTag-∆N-SpyCatcher and 225Ac-control-IgG-SpyTag-∆N-SpyCatcher against an EGFR-positive cell-line (MDA-MB-468) was 3.7 ± 3.3 Bq/mL (0.04 ± 0.03 nM) and 18.5 ± 4.4 Bq/mL (0.2 ± 0.04 nM), respectively. In mice bearing MDA-MB-468 EGFR-positive xenografts, 225Ac-nimotuzumab-SpyTag-∆N-SpyCatcher significantly (p = 0.0017) prolonged the survival of mice (64 days) compared to 225Ac-control IgG (28.5 days), nimotuzumab (28.5 days), or PBS-treated mice (30 days). The results showed that the conjugation and labeling using SpyTag/∆N-SpyCatcher to nimotuzumab did not significantly (p > 0.05) alter the receptor binding of nimotuzumab compared with a non-specific conjugation approach. 225Ac-nimotuzumab-SpyTag-∆N-SpyCatcher was effective in vitro and in an EGFR-positive triple negative breast cancer xenograft model.
Keywords: EGFR; SpyTag/∆N-SpyCatcher; diagnostic; immunoPET; radioimmunotherapy; site-specific labeling.