Background: Many biological processes, such as cancer metastasis, organismal development, and acquisition of resistance to cytotoxic therapy, rely on the emergence of rare sub-clones from a larger population. Understanding how the genetic and epigenetic features of diverse clones affect clonal fitness provides insight into molecular mechanisms underlying selective processes. While large-scale barcoding with NGS readout has facilitated cellular fitness assessment at the population level, this approach does not support characterization of clones prior to selection. Single-cell genomics methods provide high biological resolution, but are challenging to scale across large populations to probe rare clones and are destructive, limiting further functional analysis of important clones.
Results: Here, we develop CloneSifter, a methodology for tracking and enriching rare clones throughout their response to selection. CloneSifter utilizes a CRISPR sgRNA-barcode library that facilitates the isolation of viable cells from specific clones within the barcoded population using a sequence-specific retrieval reporter. We demonstrate that CloneSifter can measure clonal fitness of cancer cell models in vitro and retrieve targeted clones at abundance as low as 1 in 1883 in a heterogeneous cell population.
Conclusions: CloneSifter provides a means to track and access specific and rare clones of interest across dynamic changes in population structure to comprehensively explore the basis of these changes.
Keywords: Barcode targeting; CRISPR sgRNA-barcode DNA library; Cellular heterogeneity; Clonal fitness tracking; Viable clone-specific cells recovery.