Purpose: Myotonic dystrophy type 1 (DM1) is a muscular dystrophy with neurological, cognitive, and radiological abnormalities. The developmental or degenerative nature of these abnormalities, and their progression over time, remains unclear. The aim of this study is to perform a longitudinal assessment of imaging and cognitive performances in a group of patients with DM1.
Methods: A longitudinal observational study was conducted in a group of 33 DM1 patients. All patients underwent cognitive and MRI evaluation, including the use of structural and diffusion tensor imaging techniques, at baseline and follow-up evaluation (4 years). Longitudinal changes in white matter lesion (WML), volumetric analysis, and diffusivity values were assessed and correlated with neuropsychological test findings.
Results: An increase in WML was observed in 16 patients (48.5%). An increase in ventricular system volume and a decrease in volume of the left thalamus, caudates, putamen, and hippocampus were observed (p < 0.001). Global cortical volume showed a significant decrease (p < 0.001), although no changes were observed in white matter volume. A significant increase in mean diffusivity and decrease in fractional anisotropy for the white matter were found (p < 0.001). Neuropsychological evaluation showed a significant deterioration in test performance that measures working memory (Letter-Number Sequencing, p = 0.049) and visuospatial skills (Benton Visual Retention Test, p = 0.001). These findings were significantly associated with WML load (working memory p = 0.002 and visuospatial skills p = 0.021) and mean diffusivity increase (visuospatial skills p = 0.003 in the corpus callosum and working memory p = 0.043 in the right cerebral white matter).
Conclusion: White matter and grey matter involvement in DM1 patients is progressive. Patients experience a worsening in cognitive impairment that correlates with white matter involvement. These findings support the neurodegenerative nature of this disease.
Keywords: Diffusion tensor imaging; Magnetic resonance imaging; Myotonic dystrophy; White matter.