Cluster of differentiation 4 (CD4) molecule expressed on the leukocytes is known to function as a co-receptor for class II major histocompatibility complex (MHC) binding to T cell receptor (TCR) on helper T cells. We previously identified two CD4 alleles (CD4.A and CD4.B) in a Microminipig population based on nucleotide sequencing and PCR detection of their gene sequences. However, CD4.B protein expression was not examined because of the unavailability of a reactive antibody to a CD4.B epitope. In this study, we have produced two swine-specific monoclonal antibodies (mAbs) against CD4.B molecules, one that recognizes only CD4.B (b1D7) and the other that recognizes both the CD4.A and CD4.B alleles (x1E10) and that can be used to distinguish CD4 T cell subsets by flow cytometry and immunohistochemistry. Using these two mAbs, we identified CD4.A and CD4.B allele-specific proteins on the surface of CD4.A (+/+) and CD4.B (+/+) T cells at a similar level of expression. Moreover, stimulation of peripheral blood mononuclear cells (PBMCs) derived from CD4.A (+/+) and CD4.B (+/+) swine with toxic shock syndrome toxin-1 (TSST-1) in vitro similarly activated both groups of cells that exhibited a slight increase in the CD4/CD8 double positive (DP) cell ratio. A large portion of the DP cells from the allelic CD4.A (+/+) and CD4.B (+/+) groups enhanced the total CD4 and class I swine leukocyte antigen (SLA) expression. The x1E10 mAb delayed and reduced the TSST-1-induced activation of CD4 T cells. Thus, CD4.B appears to be a functional protein whose expression on activated T cells is analogous to CD4.A.