Introduction: Liver injury induced by drugs is a serious clinical problem. Many circulating biomarkers for identifying and predicting drug-induced liver injury (DILI) have been proposed.Areas covered: Biomarkers are mainly predicated on the mechanistic understanding of the underlying DILI, often in the context of acetaminophen overdose. New panels of biomarkers have emerged that are related to recovery/regeneration rather than injury following DILI. We explore the clinical relevance and limitations of these new biomarkers including recent controversies. Extracellular vesicles have also emerged as a promising vector of biomarkers, although the biological role for EVs may limit their clinical usefulness. New technological approaches for biomarker discovery are also explored.Expert opinion: Recent clinical studies have validated the efficacy of some of these new biomarkers, cytokeratin-18, macrophage colony-stimulating factor receptor, and osteopontin for DILI prognosis. Low prevalence of DILI is an inherent limitation to DILI biomarker development. Furthering mechanistic understanding of DILI and leveraging technological advances (e.g. machine learning/omics) is necessary to improve upon the newest generation of biomarkers. The integration of omics approaches with machine learning has led to novel insights in cancer research and DILI research is poised to leverage these technologies for biomarker discovery and development.
Keywords: Biomarker; acetaminophen; cytokeratin-18; drug-induced liver injury; extracellular vesicles; machine learning; macrophage colony-stimulating factor receptor; osteopontin.