Hydrocarbons to carboxyl-rich alicyclic molecules: A continuum model to describe biodegradation of petroleum-derived dissolved organic matter in contaminated groundwater plumes

J Hazard Mater. 2021 Jan 15:402:123998. doi: 10.1016/j.jhazmat.2020.123998. Epub 2020 Sep 19.

Abstract

Relationships between dissolved organic matter (DOM) reactivity and chemical composition in a groundwater plume containing petroleum-derived DOM (DOMHC) were examined by quantitative and qualitative measurements to determine the source and chemical composition of the compounds that persist downgradient. Samples were collected from a transect down the core of the plume in the direction of groundwater flow. An exponential decrease in dissolved organic carbon concentration resulting from biodegradation along the transect correlated with a continuous shift in fluorescent DOMHC from shorter to longer wavelengths. Moreover, ultrahigh resolution mass spectrometry showed a shift from low molecular weight (MW) aliphatic, reduced compounds to high MW, unsaturated (alicyclic/aromatic), high oxygen compounds that are consistent with carboxyl-rich alicyclic molecules. The degree of condensed aromaticity increased downgradient, indicating that compounds with larger, conjugated aromatic core structures were less susceptible to biodegradation. Nuclear magnetic resonance spectroscopy showed a decrease in alkyl (particularly methyl) and an increase in aromatic/olefinic structural motifs. Collectively, data obtained from the combination of these complementary analytical techniques indicated that changes in the DOMHC composition of a groundwater plume are gradual, as relatively low molecular weight (MW), reduced, aliphatic compounds from the oil source were selectively degraded and high MW, alicyclic/aromatic, oxidized compounds persisted.

Keywords: Hydrocarbon oxidation products; OPAH; Oxyhydrocarbon; Polar hydrocarbon metabolites.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biodegradation, Environmental
  • Groundwater*
  • Hydrocarbons
  • Petroleum*
  • Water Pollutants, Chemical* / analysis

Substances

  • Hydrocarbons
  • Petroleum
  • Water Pollutants, Chemical