Background: Abnormalities in brain development and plasticity have been associated with the pathophysiology of schizophrenia. The role of brain-derived neurotrophic factor (BDNF) in schizophrenia is the recent area of interest because it regulates neurogenesis. The current study aimed to assess and compare serum BDNF levels between first-episode schizophrenia patients and healthy controls, and evaluate its correlation with the socio-demographic and clinical variables.
Methodology: It was a cross-sectional comparative study for the assessment of serum BDNF levels between patients with first-episode schizophrenia (N=50) and healthy controls (N-50) conducted in the Department of Psychiatry at a tertiary care public hospital attached to a medical school in North India. Participants were assessed for the socio-demographic parameters, nicotine dependence, and clinical details using structured scales. Serum BDNF level estimated using the sandwich ELISA technique. The comparison between the groups was done by using a Student t-test or chi-square test. Spearman correlation was performed between mean BDNF scores and demographic or illness variables in both first-episode schizophrenia and healthy control groups.
Results: There was a significantly lower mean score of total serum BDNF levels in first-episode schizophrenia patients as compared to controls (8.44 ± 1.54 vs 10.44 ± 2.04; t = 5.52, p < 0.001; 95% CI = 1.28-2.71). The total FTND scores for smokeless tobacco use were negatively correlated to BDNF levels among healthy controls (r=-0.30, p=0.03) as well as in the first-episode schizophrenia group (r=-0.32, p= 0.04). None of the other illness-related variables were correlated to serum BDNF values in the first episode schizophrenia group.
Conclusion: Individuals with first-episode schizophrenia have lower serum BDNF levels than healthy controls. The illness-related factors such as duration of untreated psychosis or psychopathology were not correlated with BDNF levels. Thus abnormal signaling of BDNF can lead to abnormal brain functioning which can make an individual more susceptible to schizophrenia.
Keywords: Antipsychotics; Brain-Derived Neurotrophic Factor; First episode schizophrenia; Neurodevelopment; Smoking.
Copyright © 2020 Elsevier B.V. All rights reserved.