Response prediction of hepatocellular carcinoma undergoing transcatheter arterial chemoembolization: unlocking the potential of CT texture analysis through nested decision tree models

Eur Radiol. 2021 Jun;31(6):4367-4376. doi: 10.1007/s00330-020-07511-3. Epub 2020 Dec 3.

Abstract

Objectives: To investigate if nested multiparametric decision tree models based on tumor size and CT texture parameters from pre-therapeutic imaging can accurately predict hepatocellular carcinoma (HCC) lesion response to transcatheter arterial chemoembolization (TACE).

Materials and methods: This retrospective study (January 2011-September 2017) included consecutive pre- and post-therapeutic dynamic CT scans of 37 patients with 92 biopsy-proven HCC lesions treated with drug-eluting bead TACE. Following manual segmentation of lesions according to modified Response Evaluation Criteria in Solid Tumors criteria on baseline arterial phase CT images, tumor size and quantitative texture parameters were extracted. HCCs were grouped into lesions undergoing primary TACE (VT-lesions) or repeated TACE (RT-lesions). Distinct multiparametric decision tree models to predict complete response (CR) and progressive disease (PD) for the two groups were generated. AUC and model accuracy were assessed.

Results: Thirty-eight of 72 VT-lesions (52.8%) and 8 of 20 RT-lesions (40%) achieved CR. Sixteen VT-lesions (22.2%) and 8 RT-lesions (40%) showed PD on follow-up imaging despite TACE treatment. Mean of positive pixels (MPP) was significantly higher in VT-lesions compared to RT-lesions (180.5 vs 92.8, p = 0.001). The highest AUC in ROC curve analysis and accuracy was observed for the prediction of CR in VT-lesions (AUC 0.96, positive predictive value 96.9%, accuracy 88.9%). Prediction of PD in VT-lesions (AUC 0.88, accuracy 80.6%), CR in RT-lesions (AUC 0.83, accuracy 75.0%), and PD in RT-lesions (AUC 0.86, accuracy 80.0%) was slightly inferior.

Conclusions: Nested multiparametric decision tree models based on tumor heterogeneity and size can predict HCC lesion response to TACE treatment with high accuracy. They may be used as an additional criterion in the multidisciplinary treatment decision-making process.

Key points: • HCC lesion response to TACE treatment can be predicted with high accuracy based on baseline tumor heterogeneity and size. • Complete response of HCC lesions undergoing primary TACE was correctly predicted with 88.9% accuracy and a positive predictive value of 96.9%. • Progressive disease was correctly predicted with 80.6% accuracy for lesions undergoing primary TACE and 80.0% accuracy for lesions undergoing repeated TACE.

Keywords: Decision trees; Hepatocellular carcinoma; Therapeutic chemoembolization; Treatment outcome; X-ray computed tomography.

MeSH terms

  • Carcinoma, Hepatocellular* / diagnostic imaging
  • Carcinoma, Hepatocellular* / therapy
  • Chemoembolization, Therapeutic*
  • Decision Trees
  • Humans
  • Liver Neoplasms* / diagnostic imaging
  • Liver Neoplasms* / therapy
  • Retrospective Studies
  • Tomography, X-Ray Computed
  • Treatment Outcome