Compressed sensing and deep learning reconstruction for women's pelvic MRI denoising: Utility for improving image quality and examination time in routine clinical practice

Eur J Radiol. 2021 Jan:134:109430. doi: 10.1016/j.ejrad.2020.109430. Epub 2020 Nov 21.

Abstract

Purpose: To demonstrate the utility of compressed sensing with parallel imaging (Compressed SPEEDER) and AiCE compared with that of conventional parallel imaging (SPEEDER) for shortening examination time and improving image quality of women's pelvic MRI.

Method: Thirty consecutive patients with women's pelvic diseases (mean age 50 years) underwent T2-weighted imaging using Compressed SPEEDER as well as conventional SPEEDER reconstructed with and without AiCE. The examination times were recorded, and signal-to-noise ratio (SNR) was calculated for every patient. Moreover, overall image quality was assessed using a 5-point scoring system, and final scores for all patients were determined by consensus of two readers. Mean examination time, SNR and overall image quality were compared among the four data sets by Wilcoxon signed-rank test.

Results: Examination times for Compressed SPEEDER with and without AiCE were significantly shorter than those for conventional SPEEDER with and without AiCE (with AiCE: p < 0.0001, without AiCE: p < 0.0001). SNR of Compressed SPEEDER and of SPEEDER with AiCE was significantly superior to that of Compressed SPEEDER without AiCE (vs. Compressed SPEEDER, p = 0.01; vs. SPEEDER, p = 0.009). Overall image quality of Compressed SPEEDER with AiCE and of SPEEDER with and without AiCE was significantly higher than that of Compressed SPEEDER without AiCE (vs. Compressed SPEEDER with AiCE, p < 0.0001; vs. SPEEDER with AiCE, p < 0.0001; SPEEDER without AiCE, p = 0.0003).

Conclusion: Image quality and shorten examination time for T2-weighted imaging in women's pelvic MRI can be significantly improved by using Compressed SPEEDER with AiCE in comparison with conventional SPEEDER, although other sequences were not tested.

Keywords: Compressed sensing; Deep learning; MRI; Parallel imaging; Women’s imaging.

MeSH terms

  • Deep Learning*
  • Female
  • Humans
  • Magnetic Resonance Imaging
  • Middle Aged
  • Radiography
  • Signal-To-Noise Ratio