Pregabalin is approved in multiple countries as adjunctive therapy for adult patients with focal onset seizures (FOS; previously termed partial onset seizures). This study used population pharmacokinetic (PK) and exposure-response (E-R) analyses from pooled pregabalin concentration and efficacy data to compare pregabalin exposure and E-R relationships in pediatric and adult patients with FOS, to support pediatric dosage recommendations. A one-compartment disposition model was used, with first-order absorption and body surface area-normalized creatinine clearance on clearance. Individual pregabalin average steady-state concentrations were predicted and used in an E-R analysis of efficacy. The E-R relationship of pregabalin was similar in pediatric (4-16 years) and adult patients with FOS after accounting for differences in baseline natural log-transformed 28-day seizure rate and placebo effect. Population PK simulations showed that children aged 4-16 years and weighing ≥ 30 kg required pregabalin 2.5-10 mg/kg/day to achieve similar pregabalin exposure at steady-state to adult patients receiving the approved doses of 150-600 mg/day. For children 4-16 years weighing < 30 kg, a higher pregabalin dose of 3.5-14 mg/kg/day was required to achieve equivalent exposure at steady-state. The results support the dosage guidance provided in the pregabalin prescribing label, whereby pediatric patients (4-16 years) weighing < 30 kg should receive a 40% higher pregabalin dose (per kg of body weight) than patients weighing ≥ 30 kg to achieve similar exposure. Our combined modeling approach may provide guidance for future extrapolation assessment from adult to pediatric patients.
© 2020 Pfizer Inc. Clinical Pharmacology & Therapeutics published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.