Background: Esophageal cancer (EC) is a primary malignant tumor originating from the esophageal of the epithelium. Surgical resection is a potential treatment for EC, but this is only appropriate for patients who have locally resectable lesions suitable for surgery. However, most patients with EC are at a late stage when diagnosed. Therefore, there is an urgent need to further explore the pathogenesis of EC to enable early diagnosis and treatment.
Methods: Our study downloaded 2 expression spectrum datasets (GSE92396 and GSE100942) in the Gene Expression Omnibus (GEO) database. GEO2 R was used to identify the Differentially expressed genes (DEGs) between the samples of EC and control. Using the DAVID tool to make the Functional enrichment analysis. Constructing A protein-protein interaction (PPI) network. Identifying the Hub genes. The impact of hub gene expression on overall survival and their expression based on immunohistochemistry were analyzed. Associated microRNAs were also predicted.
Results: There were 36 common DEGs identified. The analysis of GO and KEGG results shown that the variations were predominantly concentrated in the extracellular matrix (ECM), ECM organization, DNA binding, platelet activation, and ECM-receptor interactions. COL3A1 and POSTN had high expression in EC tissues which was compared with their expression in healthy tissues. Analysis of pathologic stages showed that when COL3A1 and POSTN were highly expressed, the stage of the pathologic of EC patients was relatively high (P < 0.005).
Conclusions: COL3A1 and POSTN may play an important role in the advancement and occurrence of EC. These genes could provide some novel ideas and basis for the diagnosis and targeted treatment of EC.
Keywords: bioinformatics; cancer; differentially expressed genes; esophageal; hub gene.