Montmorillonite nanosheets with enhanced photodynamic performance for synergistic bacterial ablation

J Mater Chem B. 2021 Jan 21;9(2):404-409. doi: 10.1039/d0tb02254c.

Abstract

Montmorillonite (MMT), as a naturally sourced and FDA-approved biomaterial, has attracted considerable attention due to its extensive application in biomedical areas, such as intestinal ailments, drug delivery, and additive manufacturing. In this work, two-dimensional montmorillonite (2D-MMT) ultrathin nanosheets were successfully prepared from sodium montmorillonite (Na-MMT) by utilizing a freeze-drying assisted method. Possessing a large specific surface area and increased number of exposed hydroxyl groups, 2D-MMT nanosheets exhibited better antibacterial ability than the original Na-MMT. More strikingly, we found that both 2D-MMT nanosheets and Na-MMT could generate reactive oxygen species (ROS) upon visible light illumination, which could promote their antibacterial efficiency. As a result, 2D-MMT nanosheets showed efficient antibacterial performance in the presence of light towards Escherichia coli with a simultaneous enhancement of surface adsorption and photodynamic ablation. What's more, a possible mechanism for ROS generation by MMT upon light illumination was first proposed in this work. The combination of the increased physical adsorption capacity and ROS generation ability of 2D-MMT nanosheets would help inspire the development of MMT as a promising antimicrobial candidate in the future.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / metabolism*
  • Bentonite / chemistry*
  • Humans
  • Nanotechnology / methods*
  • Photochemotherapy / methods*
  • Reactive Oxygen Species

Substances

  • Anti-Bacterial Agents
  • Reactive Oxygen Species
  • Bentonite