Background: In the United States, nationwide estimates of public drinking water arsenic exposure are not readily available. We used the U.S. Environmental Protection Agency's (EPA) Six-Year Review contaminant occurrence data set to estimate public water arsenic exposure. We compared community water system (CWS) arsenic concentrations during 2006-2008 vs. after 2009-2011, the initial monitoring period for compliance with the U.S. EPA's arsenic maximum contaminant level (MCL).
Objective: Our objective was to characterize potential inequalities in CWS arsenic exposure over time and across sociodemographic subgroups.
Methods: We estimated 3-y average arsenic concentrations for 36,406 CWSs (98%) and 2,740 counties (87%) and compared differences in means and quantiles of water arsenic (via quantile regression) between both 3-y periods for U.S. regions and sociodemographic subgroups. We assigned CWSs and counties MCL compliance categories (High if above the MCL; Low if below) for each 3-y period.
Results: From 2006-2008 to 2009-2011, mean and 95th percentile CWS arsenic (in micrograms per liter) declined by 10.3% (95% CI: 6.5%, 14.1%) and 11.5% (8.3%, 14.8%) nationwide, by 11.4% (4.7%, 18.1%) and 16.3% (8.1%, 24.5%) for the Southwest, and by 36.8% (7.4%, 66.1%) and 26.5% (12.1%, 40.8%) for New England, respectively. CWSs in the High/High compliance category (not MCL compliant) were more likely in the Southwest (61.1%), served by groundwater (94.7%), serving smaller populations (mean 1,102 persons), and serving Hispanic communities (38.3%).
Discussion: Larger absolute declines in CWS arsenic concentrations at higher water arsenic quantiles indicate declines are related to MCL implementation. CWSs reliant on groundwater, serving smaller populations, located in the Southwest, and serving Hispanic communities were more likely to continue exceeding the arsenic MCL, raising environmental justice concerns. These estimates of public drinking water arsenic exposure can enable further surveillance and epidemiologic research, including assessing whether differential declines in water arsenic exposure resulted in differential declines in arsenic-associated disease. https://doi.org/10.1289/EHP7313.