Soluble Expression of hFGF19 without Fusion Protein through Synonymous Codon Substitutions and DsbC Co-Expression in E. coli

Microorganisms. 2020 Dec 7;8(12):1942. doi: 10.3390/microorganisms8121942.

Abstract

Human fibroblast growth factor 19 (hFGF19) is a difficult-to-express protein that is frequently fused with another protein for soluble expression. However, residual amino acids after cleavage with protease represent one of the major problems in therapeutic protein development. Here, we introduced synonymous codon substitutions in the N-terminal region encoding sequence of hFGF19 and co-expressed disulfide bond isomerase (ΔssDsbC) to functionally express hFGF19 without any fusion protein. Synonymous codon substitution significantly increased hFGF19 expression. Subsequent co-expression of ΔssDsbC with a selected variant of hFGF19 (scvhFGF19) further increased the proportion of soluble hFGF19 expression in Escherichia coli XL1-Blue. Both total and soluble scvhFGF19 expression increased remarkably in the alternative host, E. coli Origami 2 with mutated thioredoxin reductase and glutathione reductase. scvhFGF19 purification by anion exchange and heparin affinity chromatography resulted in a yield of 6.5 mg/L under normal induction conditions in flask culture. As such, a high cell density culture is expected to achieve an even higher yield. The biological activities of purified scvhFGF19 were assessed based on its ability to activate ERK1/2 signaling pathway in HepG2 hepatocarcinoma cells. In conclusion, the strategy described here may represent an efficient alternative process for the production of hFGF19 and/or related proteins.

Keywords: DsbC; FGF19; chaperon co-expression; synonymous codon substitution.