Transforming type-II Fe2O3@polypyrrole to Z-scheme Fe2O3@polypyrrole/Prussian blue via Prussian blue as bridge: Enhanced activity in photo-Fenton reaction and mechanism insight

J Hazard Mater. 2021 Mar 5:405:124668. doi: 10.1016/j.jhazmat.2020.124668. Epub 2020 Nov 26.

Abstract

Photo-Fenton reaction is a more effective technique for pollutant disposal than photocatalytic reaction. Herein, Fe2O3@polypyrrole/Prussian blue (Fe2O3@PPy/PB) with a hierarchical porous structure was prepared by a reactive-template method. After transforming typical type-II Fe2O3@PPy to Z-scheme Fe2O3@PPy/PB via PB as a bridge, the degradation rate was increased by 1.4 times in photocatalytic reaction and 4.0 times in photo-Fenton reaction due to higher visible-light harvest, enhanced separation efficiency of photoinduced charges, lower interface resistance, and especially well-preserved redox potentials of holes and electrons. Mechanism studies revealed that holes were quenched by H2O2, and this led to O2- generation and efficient separation of electrons. Meanwhile, O2 was reduced by separated electrons, and this further increased O2- yield. Therefore, the main radicals changed from hole in photocatalytic reaction to O2- in the photo-Fenton reaction, leading to an increase as high as 12.1-fold enhancement in the degradation rate. Conversely, only H2O2 participated into photocatalytic reaction using Fe2O3@PPy while O2 was absent, resulting in merely 4.2-fold improvement. This manuscript gives a comprehensive understanding on mechanisms of type-II and Z-scheme heterojunctions in both photocatalytic and photo-Fenton reactions. Obviously, the outcomes are beneficial for designing catalysts with high photo-Fenton activity.

Keywords: Photo-Fenton reaction; Photocatalysis; Polypyrrole; Prussian blue; Z-scheme.

Publication types

  • Research Support, Non-U.S. Gov't