Introduction: The treatment of patients with EGFR-mutant NSCLC with vascular endothelial growth factor (VEGF) inhibitors in combination with EGFR inhibitors provides a greater benefit than EGFR inhibition alone, suggesting that EGFR mutation status may define a patient subgroup with greater benefit from VEGF blockade. The mechanisms driving this potentially enhanced VEGF dependence are unknown.
Methods: We analyzed the effect of EGFR inhibition on VEGF and HIF-1α in NSCLC models in vitro and in vivo. We determined the efficacy of VEGF inhibition in xenografts and analyzed the impact of acquired EGFR inhibitor resistance on VEGF and HIF-1α.
Results: NSCLC cells with EGFR-activating mutations exhibited altered regulation of VEGF compared with EGFR wild-type cells. In EGFR-mutant cells, EGFR, not hypoxia, was the dominant regulator of HIF-1α and VEGF. NSCLC tumor models bearing classical or exon 20 EGFR mutations were more sensitive to VEGF inhibition than EGFR wild-type tumors, and a combination of VEGF and EGFR inhibition delayed tumor progression. In models of acquired EGFR inhibitor resistance, whereas VEGF remained overexpressed, the hypoxia-independent expression of HIF-1α was delinked from EGFR signaling, and EGFR inhibition no longer diminished HIF-1α or VEGF expression.
Conclusions: In EGFR-mutant NSCLC, EGFR signaling is the dominant regulator of HIF-1α and VEGF in a hypoxia-independent manner, hijacking an important cellular response regulating tumor aggressiveness. Cells with acquired EGFR inhibitor resistance retained elevated expression of HIF-1α and VEGF, and the pathways were no longer EGFR-regulated. This supports VEGF targeting in EGFR-mutant tumors in the EGFR inhibitor-naive and refractory settings.
Keywords: Epidermal growth factor receptor; Hypoxia-inducible factor; Non–small cell lung cancer; Vascular endothelial growth factor.
Copyright © 2020. Published by Elsevier Inc.