Impact of Cereal Seed Sprouting on Its Nutritional and Technological Properties: A Critical Review

Compr Rev Food Sci Food Saf. 2019 Jan;18(1):305-328. doi: 10.1111/1541-4337.12414. Epub 2018 Dec 12.

Abstract

Sprouting induces activation and de novo synthesis of hydrolytic enzymes that make nutrients available for plant growth and development. Consumption of sprouted grains is suggested to be beneficial for human health. Positive consumer perceptions about sprouted cereals have resulted in new food and beverage product launches. However, because there is no generally accepted definition of "sprouting," it is unclear when grains are to be called sprouted. Moreover, guidelines about how much sprouted grain material food products should contain to exert health benefits are currently lacking. Accordingly, there is no regulatory base to develop appropriate food labeling for "sprouted foods." This review describes the nutritional and technological properties of sprouted grains in relation to processing conditions and provides guidelines to optimize sprouting practices in order to maximize nutritive value. Relatively long sprouting times (3 to 5 days) and/or high processing temperatures (25 to 35 °C) are needed to maximize the de novo synthesis and/or release of plant bioactive compounds. Nutrient compositional changes resulting from sprouting are often associated with health benefits. However, supportive data from clinical studies are very scarce, and at present it is impossible to draw any conclusion on health benefits of sprouted cereals. Finally, grains sprouted under the above-mentioned conditions are generally unfit for use in traditional food processing and it is challenging to use sprouted grains as ingredients without compromising their nutrient content. The present review provides a basis for better defining what "sprouting" is, and to help further research and development efforts in this field as well as future food regulations development.

Keywords: cereal; germination; malting; sprouting; sprouts.