Glutathione-S-transferases (GSTs) not only show cytoprotective role and their involvement in the development of anticancer drug resistance, but also transmit signals that control cell proliferation and apoptosis. However, the role of GST isoforms in chemotherapy resistance remains elusive in pancreatic cancer. Here, we demonstrated that gemcitabine treatment increased the GSTM2 expression in pancreatic cancer cell lines. Knockdown of GSTM2 by siRNA elevated apoptosis and decreased viability of pancreatic cancer cells treated with gemcitabine. Moreover, in vivo experiments further showed that shRNA induced GSTM2 downregulation enhanced drug sensitivity of gemcitabine in orthotopic pancreatic tumor mice. We also found that GSTM2 levels were lower in tumor tissues than in non-tumor tissues and higher GSTM2 expression was significantly associated with longer overall survival. In conclusion, our findings indicate that GSTM2 expression is essential for the survival of pancreatic cancer cells undergoing gemcitabine treatment and leads to chemo resistance. Downregulation of GSTM2 in pancreatic cancer may benefit gemcitabine treatment. GSTM2 expression in patients also shows significant correlation with overall survival. Thus, our study suggests that GSTM2 is a potential target for chemotherapy optimization and prognostic biomarker of pancreatic cancer.
Keywords: Chemosensitivity; Gemcitabine; Glutathione-S-Transferase M2 (GSTM2); Pancreatic cancer; Prognosis.
Copyright © 2020 IAP and EPC. Published by Elsevier B.V. All rights reserved.