DISTRIBUTION AND HABITABILITY OF (META)STABLE BRINES ON PRESENT-DAY MARS

Nat Astron. 2020 Aug:4:756-761. doi: 10.1038/s41550-020-1080-9. Epub 2020 May 11.

Abstract

Special Regions on Mars are defined as environments able to host liquid water that meets certain temperature and water activity requirements that allow known terrestrial organisms to replicate1,2, and therefore could be habitable. Such regions would be a concern for planetary protection policies owing to the potential for forward contamination (biological contamination from Earth). Pure liquid water is unstable on the Martian surface3,4, but brines may be present3,5. Experimental work has shown that brines persist beyond their predicted stability region, leading to metastable liquids8-10. Here we show that (meta)stable brines can form and persist from the equator to high latitudes on the surface of Mars for a few percent of the year for up to six consecutive hours, a broader range than previously thought11,12. However, only the lowest eutectic solutions can form, leading to brines with temperatures of less than 225 K. Our results indicate that (meta)stable brines on the Martian surface and shallow subsurface (a few centimeters deep) are not habitable because their water activities and temperatures fall outside the known tolerances for terrestrial life. Furthermore, (meta)stable brines do not meet the Special Regions requirements, reducing the risk for forward contamination and easing threats related to the exploration of the Martian surface.