The present study emphasized on the anti-cancerous effects of dioscin and its underlying molecular mechanism in human endometrial cancer Ishikawa cells. Dioscin significantly suppressed the proliferation of Ishikawa cells at IC50 of 2.37 μM. Besides, dioscin could inhibit the proliferation of Ishikawa cells by blocking the G0/G1 cell cycle through up-regulation of p16, p21, and p27 and down-regulation of cycle-cellular protein (Cyclin A/D/E) and cyclin-dependent kinase (CDK2/4/6). Also, it promoted apoptosis through the mitochondrial pathway, including the regulation of Bcl family proteins, the increase of ROS levels, the activation of caspases (Caspase 9/3), and the decrease of mitochondrial membrane permeability. Whereas dioscin also effectively activated the marker genes and proteins (Fas, TNF-R1, and Caspase 8) related to the death receptor-mediated pathway which confirmed the involvement of both the pathways for dioscin-induced apoptosis. The current results demonstrated that dioscin possessed potential health benefits with respect to endometrial cancer prevention and treatment.
Keywords: Apoptosis; Cell cycle; Dioscin; Ishikawa; Mitochondrial pathway.
Copyright © 2020 Elsevier Ltd. All rights reserved.