Atovaquone-proguanil remains effective against multidrug-resistant Plasmodium falciparum in Southeast Asia, but resistance is mediated by a single point mutation in cytochrome b (cytb) that can arise during treatment. Among 14 atovaquone-proguanil treatment failures in a clinical trial in Cambodia, only one recrudescence harbored the cytb mutation Y268C. Deep sequencing did not detect the mutation at baseline or in the first 3 days of treatment, suggesting that it arose de novo Further sequencing across cytb similarly found no low-frequency cytb mutations that were up-selected from baseline to recrudescence. Copy number amplification in dihydroorotate dehydrogenase (DHODH) and cytb as markers of atovaquone tolerance was also absent. Cytb mutation played a minor role in atovaquone-proguanil treatment failures in an active comparator clinical trial.
Keywords: Malarone; Plasmodium falciparum; atovaquone-proguanil; cytochrome b; deep sequencing; drug resistance; malaria.
Copyright © 2021 American Society for Microbiology.