Background: Optical diagnosis of colorectal polyps remains challenging. Image-enhancement techniques such as narrow-band imaging and blue-light imaging (BLI) can improve optical diagnosis. We developed and prospectively validated a computer-aided diagnosis system (CADx) using high-definition white-light (HDWL) and BLI images, and compared the system with the optical diagnosis of expert and novice endoscopists.
Methods: CADx characterized colorectal polyps by exploiting artificial neural networks. Six experts and 13 novices optically diagnosed 60 colorectal polyps based on intuition. After 4 weeks, the same set of images was permuted and optically diagnosed using the BLI Adenoma Serrated International Classification (BASIC).
Results: CADx had a diagnostic accuracy of 88.3 % using HDWL images and 86.7 % using BLI images. The overall diagnostic accuracy combining HDWL and BLI (multimodal imaging) was 95.0 %, which was significantly higher than that of experts (81.7 %, P = 0.03) and novices (66.7 %, P < 0.001). Sensitivity was also higher for CADx (95.6 % vs. 61.1 % and 55.4 %), whereas specificity was higher for experts compared with CADx and novices (95.6 % vs. 93.3 % and 93.2 %). For endoscopists, diagnostic accuracy did not increase when using BASIC, either for experts (intuition 79.5 % vs. BASIC 81.7 %, P = 0.14) or for novices (intuition 66.7 % vs. BASIC 66.5 %, P = 0.95).
Conclusion: CADx had a significantly higher diagnostic accuracy than experts and novices for the optical diagnosis of colorectal polyps. Multimodal imaging, incorporating both HDWL and BLI, improved the diagnostic accuracy of CADx. BASIC did not increase the diagnostic accuracy of endoscopists compared with intuitive optical diagnosis.
Trial registration: ClinicalTrials.gov NCT04349787.
Thieme. All rights reserved.