Severe virus outbreaks are occurring more often and spreading faster and further than ever. Preparedness plans based on lessons learned from past epidemics can guide behavioral and pharmacological interventions to contain and treat emergent diseases. Although conventional biologics production systems can meet the pharmaceutical needs of a community at homeostasis, the COVID-19 pandemic has created an abrupt rise in demand for vaccines and therapeutics that highlight the gaps in this supply chain's ability to quickly develop and produce biologics in emergency situations given a short lead time. Considering the projected requirements for COVID-19 vaccines and the necessity for expedited large scale manufacture the capabilities of current biologics production systems should be surveyed to determine their applicability to pandemic preparedness. Plant-based biologics production systems have progressed to a state of commercial viability in the past 30 years with the capacity for production of complex, glycosylated, "mammalian compatible" molecules in a system with comparatively low production costs, high scalability, and production flexibility. Continued research drives the expansion of plant virus-based tools for harnessing the full production capacity from the plant biomass in transient systems. Here, we present an overview of vaccine production systems with a focus on plant-based production systems and their potential role as "first responders" in emergency pandemic situations.
Keywords: COVID-19; Nicotiana benthamiana; biopharming; plant-based biologics production; vaccines; viral vectors; viruses.