Rapid fabrication of anti-corrosion and self-healing superhydrophobic aluminum surfaces through environmentally friendly femtosecond laser processing

Opt Express. 2020 Nov 23;28(24):35636-35650. doi: 10.1364/OE.400804.

Abstract

The development of superhydrophobic metals has found many applications such as self-cleaning, anti-corrosion, anti-icing, and water transportation. Recently, femtosecond laser has been used to create nano/microstructures and wetting property changes. However, for some of the most common metals, such as aluminum, a relatively long aging process is required to obtain stable hydrophobicity. In this work, we introduce a combination of femtosecond laser ablation and heat treatment post-process, without using any harsh chemicals. We turn aluminum superhydrophobic within 30 minutes of heat treatment following femtosecond laser processing, and this is significantly shorter compared to conventional aging process of laser-ablated aluminum. The superhydrophobic surfaces maintain high contact angles greater than 160° and low sliding angles smaller than 5° over two months after the heat treatment. Moreover, the samples exhibit strong superhydrophobicity for various types of liquids (milk, coffee, CuPc, R6G, HCl, NaOH and CuCl2). The samples also show excellent self-healing and anti-corrosion properties. The mechanism for fast wettability conversion time is discussed. Our technique is a rapid process, reproducible, feasible for large-area fabrication, and environment-friendly.