A temperature-modulated dilatometer by using a piezobender-based device

Rev Sci Instrum. 2020 Dec 1;91(12):123901. doi: 10.1063/5.0010826.

Abstract

We report a new design of a temperature-modulated dilatometer, which obtains the linear thermal expansion coefficient by measuring the oscillating changes of the sample's length and temperature by using a piezobender and a thermocouple, respectively. Using an iron-based superconductor KFe2As2 as an example, we show that this device is able to measure thin samples with high resolutions at low temperatures and high magnetic fields. Despite its incapability of giving absolute values, the new dilatometer provides a high-resolution method to study many important physical properties in condensed matter physics, such as thermal and quantum phase transitions and vortex dynamics in the superconducting state. The prototype design of this device can be further improved in many aspects to meet particular requirements.