Mesenchymal glioblastoma-induced mature de-novo vessel formation of vascular endothelial cells in a microfluidic device

Mol Biol Rep. 2021 Jan;48(1):395-403. doi: 10.1007/s11033-020-06061-7. Epub 2021 Jan 2.

Abstract

High vascularization is a biological characteristic of glioblastoma (GBM); however, an in-vitro experimental model to verify the mechanism and physiological role of vasculogenesis in GBM is not well-established. Recently, we established a self-organizing vasculogenic model using human umbilical vein endothelial cells (HUVECs) co-cultivated with human lung fibroblasts (hLFs). Here, we exploited this system to establish a realistic model of vasculogenesis in GBM. We developed two polydimethylsiloxane (PDMS) devices, a doughnut-hole dish and a 5-lane microfluidic device to observe the contact-independent effects of glioblastoma cells on HUVECs. We tested five patient-derived and five widely used GBM cell lines. Confocal fluorescence microscopy was used to observe the morphological changes in Red Fluorescent Protein (RFP)-HUVECs and fluorescein isothiocyanate (FITC)-dextran perfusion. The genetic and expression properties of GBM cell lines were analyzed. The doughnut-hole dish assay revealed KNS1451 as the only cells to induce HUVEC transformation to vessel-like structures, similar to hLFs. The 5-lane device assay demonstrated that KNS1451 promoted the formation of a vascular network that was fully perfused, revealing the functioning luminal construction. Microarray analysis revealed that KNS1451 is a mesenchymal subtype of GBM. Using a patient-derived mesenchymal GBM cell line, mature de-novo vessel formation could be induced in HUVECs by contact-independent co-culture with GBM in a microfluidic device. These results support the development of a novel in vitro research model and provide novel insights in the neovasculogenic mechanism of GBM and may potentially facilitate the future detection of unknown molecular targets.

Keywords: Angiogenesis; Glioblastoma; HUVEC; Mesenchymal subtype; Microfluidic device; Vasculogenesis.

MeSH terms

  • Blood Vessels / growth & development
  • Blood Vessels / pathology
  • Brain Neoplasms / genetics*
  • Brain Neoplasms / metabolism
  • Brain Neoplasms / pathology
  • Cell Differentiation / genetics*
  • Cell Line, Tumor
  • Cell Proliferation / genetics
  • Coculture Techniques
  • Endothelial Cells / metabolism
  • Endothelial Cells / pathology
  • Glioblastoma / genetics*
  • Glioblastoma / metabolism
  • Glioblastoma / pathology
  • Human Umbilical Vein Endothelial Cells
  • Humans
  • Lab-On-A-Chip Devices
  • Luminescent Proteins / metabolism
  • Mesenchymal Stem Cells / metabolism
  • Mesoderm / growth & development
  • Mesoderm / pathology
  • Neovascularization, Pathologic / genetics*
  • Neovascularization, Pathologic / metabolism
  • Neovascularization, Pathologic / pathology
  • Red Fluorescent Protein

Substances

  • Luminescent Proteins