Development and optimization of halogenated vinyl sulfones as Nrf2 activators for the treatment of Parkinson's disease

Eur J Med Chem. 2021 Feb 15:212:113103. doi: 10.1016/j.ejmech.2020.113103. Epub 2020 Dec 25.

Abstract

The Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway plays a pivotal role in the cellular defense system against oxidative stress by inducing antioxidant and anti-inflammatory effects. We previously developed Nrf2 activators that potentially protect the death of dopaminergic (DAergic) neuronal cells against oxidative stress in Parkinson's disease (PD). In this study, we designed and synthesized a class of halogenated vinyl sulfones by inserting halogens and pyridine to maximize Nrf2 activation efficacy. Among the synthesized compounds, (E)-3-chloro-2-(2-((2-chlorophenyl)sulfonyl)vinyl)pyridine (9d) significantly exhibited potent Nrf2 activating efficacy (9d: EC50 = 26 nM) at least 10-fold compared with the previous developed compounds (1 and 2). Furthermore, treating with 9d remarkably increased Nrf2 nuclear translocation and Nrf2 protein levels in microglial BV-2 cells. 9d was shown to induce the expression of antioxidant response genes HO-1, GCLC, GCLM, and SOD-1 at both the mRNA and protein levels and suppress proinflammatory cytokines and enzymes. Also, 9d remarkably protected DAergic neurons and restored the PD-associated motor dysfunction in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model.

Keywords: Antioxidant; Halogenated vinyl sulfones; MPTP-induced mouse model; Nrf2 activator; Parkinson’s disease.

MeSH terms

  • Animals
  • Cell Line
  • Cell Survival / drug effects
  • Dose-Response Relationship, Drug
  • Drug Development*
  • Halogenation
  • Humans
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Molecular Structure
  • NF-E2-Related Factor 2 / metabolism*
  • Parkinson Disease / drug therapy*
  • Parkinson Disease / metabolism
  • Structure-Activity Relationship
  • Sulfones / chemical synthesis
  • Sulfones / chemistry
  • Sulfones / pharmacology*

Substances

  • NF-E2-Related Factor 2
  • NFE2L2 protein, human
  • Sulfones
  • divinyl sulfone