Multi-omic molecular profiling reveals potentially targetable abnormalities shared across multiple histologies of brain metastasis

Acta Neuropathol. 2021 Feb;141(2):303-321. doi: 10.1007/s00401-020-02256-1. Epub 2021 Jan 4.

Abstract

The deadly complication of brain metastasis (BM) is largely confined to a relatively narrow cross-section of systemic malignancies, suggesting a fundamental role for biological mechanisms shared across commonly brain metastatic tumor types. To identify and characterize such mechanisms, we performed genomic, transcriptional, and proteomic profiling using whole-exome sequencing, mRNA-seq, and reverse-phase protein array analysis in a cohort of the lung, breast, and renal cell carcinomas consisting of BM and patient-matched primary or extracranial metastatic tissues. While no specific genomic alterations were associated with BM, correlations with impaired cellular immunity, upregulated oxidative phosphorylation (OXPHOS), and canonical oncogenic signaling pathways including phosphoinositide 3-kinase (PI3K) signaling, were apparent across multiple tumor histologies. Multiplexed immunofluorescence analysis confirmed significant T cell depletion in BM, indicative of a fundamentally altered immune microenvironment. Moreover, functional studies using in vitro and in vivo modeling demonstrated heightened oxidative metabolism in BM along with sensitivity to OXPHOS inhibition in murine BM models and brain metastatic derivatives relative to isogenic parentals. These findings demonstrate that pathophysiological rewiring of oncogenic signaling, cellular metabolism, and immune microenvironment broadly characterizes BM. Further clarification of this biology will likely reveal promising targets for therapeutic development against BM arising from a broad variety of systemic cancers.

Keywords: Brain metastasis; Immunosuppression; Molecular profiling; Multiple histologies; Oxidative phosphorylation; Phosphoinositide 3-kinase (PI3K) signaling.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Base Sequence
  • Brain Neoplasms / immunology
  • Brain Neoplasms / pathology*
  • Brain Neoplasms / secondary*
  • Cell Survival
  • DNA Fingerprinting / methods*
  • Exome Sequencing
  • Female
  • Fluorescent Antibody Technique
  • Gene Expression Regulation, Neoplastic
  • Genomics / methods*
  • Humans
  • Mice
  • Mice, SCID
  • Neoplasm Transplantation
  • Protein Array Analysis
  • Proteomics
  • Superoxide Dismutase / metabolism
  • Survival Analysis

Substances

  • Superoxide Dismutase