Single-atom-layer catalysts with fully activated basal-atoms will provide a solution to the low loading-density bottleneck of single-atom catalysts. Herein, we activate the majority of the basal sites of monolayer MoS2 , by doping Co ions to induce long-range ferromagnetic order. This strategy, as revealed by in situ synchrotron radiation microscopic infrared spectroscopy and electrochemical measurements, could activate more than 50 % of the originally inert basal-plane S atoms in the ferromagnetic monolayer for the hydrogen evolution reaction (HER). Consequently, on a single monolayer of ferromagnetic MoS2 measured by on-chip micro-cell, a current density of 10 mA cm-2 could be achieved at the overpotential of 137 mV, corresponding to a mass activity of 28, 571 Ag-1 , which is two orders of magnitude higher than the multilayer counterpart. Its exchange current density of 75 μA cm-2 also surpasses most other MoS2 -based catalysts. Experimental results and theoretical calculations show the activation of basal plane S atoms arises from an increase of electronic density around the Fermi level, promoting the H adsorption ability of basal-plane S atoms.
Keywords: MoS2; XAFS; ferromagnetism; hydrogen evolution reaction; single-atom-layer catalysis.
© 2021 Wiley-VCH GmbH.