Metastasis is responsible for the majority of breast cancer-related deaths, however, the mechanisms underlying metastasis in this disease remain largely elusive. Here we report that under hypoxic conditions, alternative splicing of MBD2 is suppressed, favoring the production of MBD2a, which facilitates breast cancer metastasis. Specifically, MBD2a promoted, whereas its lesser known short form MBD2c suppressed metastasis. Activation of HIF1 under hypoxia facilitated MBD2a production via repression of SRSF2-mediated alternative splicing. As a result, elevated MBD2a outcompeted MBD2c for binding to promoter CpG islands to activate expression of FZD1, thereby promoting epithelial-to-mesenchymal transition and metastasis. Strikingly, clinical data reveal significantly correlated expression of MBD2a and MBD2c with the invasiveness of malignancy, indicating opposing roles for MBD2 splicing variants in regulating human breast cancer metastasis. Collectively, our findings establish a novel link between MBD2 switching and tumor metastasis and provide a promising therapeutic strategy and predictive biomarkers for hypoxia-driven breast cancer metastasis. SIGNIFICANCE: This study defines the opposing roles and clinical relevance of MBD2a and MBD2c, two MBD2 alternative splicing products, in hypoxia-driven breast cancer metastasis. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/5/1265/F1.large.jpg.
©2021 American Association for Cancer Research.