Objectives: To create and validate a model to predict depression symptom severity among patients with treatment-resistant depression (TRD) using commonly recorded variables within medical claims databases.
Methods: Adults with TRD (here defined as > 2 antidepressant treatments in an episode, suggestive of nonresponse) and ≥ 1 Patient Health Questionnaire (PHQ)-9 record on or after the index TRD date were identified (2013-2018) in Decision Resource Group's Real World Data Repository, which links an electronic health record database to a medical claims database. A total of 116 clinical/demographic variables were utilized as predictors of the study outcome of depression symptom severity, which was measured by PHQ-9 total score category (score: 0-9 = none to mild, 10-14 = moderate, 15-27 = moderately severe to severe). A random forest approach was applied to develop and validate the predictive model.
Results: Among 5,356 PHQ-9 scores in the study population, the mean (standard deviation) PHQ-9 score was 10.1 (7.2). The model yielded an accuracy of 62.7%. For each predicted depression symptom severity category, the mean observed scores (8.0, 12.2, and 16.2) fell within the appropriate range.
Conclusions: While there is room for improvement in its accuracy, the use of a machine learning tool that predicts depression symptom severity of patients with TRD can potentially have wide population-level applications. Healthcare systems and payers can build upon this groundwork and use the variables identified and the predictive modeling approach to create an algorithm specific to their population.
Keywords: Patient Health Questionnaire-9; depression; depression severity; treatment-resistant major depressive disorder.
© 2021 Janssen Scientific Affairs, LLC. Brain and Behavior published by Wiley Periodicals LLC.