Background: Aneurysm is a severe and fatal disease. This study aims to comprehensively identify the highly conservative co-expression modules and hub genes in the abdominal aortic aneurysm (AAA), thoracic aortic aneurysm (TAA) and intracranial aneurysm (ICA) and facilitate the discovery of pathogenesis for aneurysm.
Methods: GSE57691, GSE122897, and GSE5180 microarray datasets were downloaded from the Gene Expression Omnibus database. We selected highly conservative modules using weighted gene co‑expression network analysis before performing the Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway and Reactome enrichment analysis. The protein-protein interaction (PPI) network and the miRNA-hub genes network were constructed. Furtherly, we validated the preservation of hub genes in three other datasets.
Results: Two modules with 193 genes and 159 genes were identified as well preserved in AAA, TAA, and ICA. The enrichment analysis identified that these genes were involved in several biological processes such as positive regulation of cytosolic calcium ion concentration, hemostasis, and regulation of secretion by cells. Ten highly connected PPI networks were constructed, and 55 hub genes were identified. In the miRNA-hub genes network, CCR7 was the most connected gene, followed by TNF and CXCR4. The most connected miRNAs were hsa-mir-26b-5p and hsa-mir-335-5p. The hub gene module was proved to be preserved in all three datasets.
Conclusions: Our study highlighted and validated two highly conservative co-expression modules and miRNA-hub genes network in three kinds of aneurysms, which may promote understanding of the aneurysm and provide potential therapeutic targets and biomarkers of aneurysm.
Keywords: Aneurysm; Bioinformatics analysis; Weighted gene co expression network analysis.