EZH2 activates CHK1 signaling to promote ovarian cancer chemoresistance by maintaining the properties of cancer stem cells

Theranostics. 2021 Jan 1;11(4):1795-1813. doi: 10.7150/thno.48101. eCollection 2021.

Abstract

Background: Ovarian cancer is a fatal malignant gynecological tumor. Ovarian cancer stem cells (OCSCs) contribute to resistance to chemotherapy. The polycomb group protein enhancer of zeste homolog 2 (EZH2) plays a key role in maintaining CSCs. Here, we aimed to investigate the specific mechanism by which EZH2 regulates CSCs to result in chemoresistance and poor prognosis of ovarian cancer. Methods: We used a nude mouse model to obtain a cell line enriched for OCSCs, named SK-3rd cells. The CRISPR and Cas9 endonuclease system was used to establish an EZH2-knockout SK-3rd ovarian cancer cell line. High-throughput PCR array and bioinformatics methods were used to screen the EZH2 target involved in CSC stemness. A luciferase reporter assay and chromatin immunoprecipitation assay were performed to identify activation of CHK1 by EZH2. We evaluated associations between EZH2/CHK1 expression and the chemoresistance and prognosis of ovarian cancer patients. Results: EZH2 plays a critical role in maintaining ovarian CSC stemness and chemo-resistance. CHK1 is an EZH2 target involved in CSC stemness. Knockdown of EZH2 in ovarian CSCs decreased CHK1 expression, while CHK1 overexpression was sufficient to reverse the inhibitory effect on spheroid formation and chemoresistance caused by repression of EZH2. In addition, EZH2 was also shown to play a unique role in activating rather than repressing CHK1 signaling through binding to the CHK1 promoter in epithelial ovarian cancer cells. Finally, in clinical samples, ovarian cancer patients with high levels of EZH2 and CHK1 not only were more resistant to platinum but also had a poorer prognosis. Conclusions: Our data revealed a previously unidentified functional and mechanistic link between EZH2 levels, CHK1 signaling activation, and ovarian CSCs and provided strong evidence that EZH2 promotes ovarian cancer chemoresistance and recurrence.

Keywords: Cancer stem cell; EZH2 and CHK1; chemoresistance; ovarian cancer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis
  • Biomarkers, Tumor / genetics
  • Biomarkers, Tumor / metabolism*
  • Cell Movement
  • Cell Proliferation
  • Checkpoint Kinase 1 / genetics
  • Checkpoint Kinase 1 / metabolism*
  • Drug Resistance, Neoplasm*
  • Enhancer of Zeste Homolog 2 Protein / genetics
  • Enhancer of Zeste Homolog 2 Protein / metabolism*
  • Female
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Neoplastic Stem Cells / metabolism
  • Neoplastic Stem Cells / pathology*
  • Ovarian Neoplasms / drug therapy*
  • Ovarian Neoplasms / genetics
  • Ovarian Neoplasms / metabolism
  • Ovarian Neoplasms / pathology
  • Signal Transduction
  • Tumor Cells, Cultured
  • Xenograft Model Antitumor Assays

Substances

  • Biomarkers, Tumor
  • EZH2 protein, human
  • Enhancer of Zeste Homolog 2 Protein
  • CHEK1 protein, human
  • Checkpoint Kinase 1