Aims: Osteoarthritis (OA) is a common joint disease and the main cause of disability. We sought to determine the effective concentration of emodin on chondrocytes and to identify the dosage of emodin that induces a comparable therapeutic effect with the COX-2 inhibitor drug, celecoxib that is currently used to treat OA.
Material and methods: In vitro experiments induced inflammation of chondrocytes by IL-1β, and an osteoarthritis model was established in vivo by cutting rat anterior cruciate ligament. Western Blot, Real-time PCR, HE staining, Safranin O-green staining and immunohistochemistry were performed to detect MMP-3, MMP-13, ADAMTS-4, iNOS and COL2A1 on the chondrocytes or the tibial plateau. The cytokine activity and content in serum of six groups of rats were measured by kit.
Results: It was found that the surface layer of the cartilage was thicker and smoother after the administration of emodin. Tissue expression of MMP-3, MMP-13, ADAMTS-4 and iNOS were significantly (p < 0.05) decreased in chondrocytes and cartilage treated with different doses of emodin, and the content of COL2A1 was reversed. Emodin also significantly decreased the blood levels of COX-2 and PGE2. The effective emodin in vitro was 5 μmol/L, whereas emodin at 80 mg/kg was equivalent to celecoxib in vivo.
Conclusion: Emodin reduces the expression of cartilage matrix degradation biomarkers, thereby reducing the degradation of cartilage matrix and protecting the knee joint cartilage. Emodin at 5 μmol/L shows the best concentration to treat chondrocytes, and the protective effect of emodin at 80 mg/kg is comparable to that of celecoxib.
Keywords: Cartilage; Emodin; Osteoarthritis; Rats; Therapeutic.
Copyright © 2021 Elsevier Inc. All rights reserved.