Purpose: To develop a low-dose Multitasking DCE technique (LD-MT-DCE) for breast imaging, enabling dynamic T1 mapping-based quantitative characterization of tumor blood flow and vascular properties with whole-breast coverage, a spatial resolution of 0.9 × 0.9 × 1.1 mm3 , and a temporal resolution of 1.4 seconds using a 20% gadolinium dose (0.02 mmol/kg).
Methods: Magnetic resonance Multitasking was used to reconstruct 5D images with three spatial dimensions, one T1 recovery dimension for dynamic T1 quantification, and one DCE dimension for contrast kinetics. Kinetic parameters , , , and were estimated from dynamic T1 maps using the two-compartment exchange model. The LD-MT-DCE repeatability and agreement against standard-dose MT-DCE were evaluated in 20 healthy subjects. In 7 patients with triple-negative breast cancer, LD-MT-DCE image quality and diagnostic results were compared with that of standard-dose clinical DCE in the same imaging session. One-way unbalanced analysis of variance with Tukey test was performed to evaluate the statistical significance of the kinetic parameters between control and patient groups.
Results: The LD-MT-DCE technique was repeatable, agreed with standard-dose MT-DCE, and showed excellent image quality. The diagnosis using LD-MT-DCE matched well with clinical results. The values of , , and were significantly different between malignant tumors and normal breast tissue (P < .001, < .001, and < .001, respectively), and between malignant and benign tumors (P = .020, .003, and < .001, respectively).
Conclusion: The LD-MT-DCE technique was repeatable and showed excellent image quality and equivalent diagnosis compared with standard-dose clinical DCE. The estimated kinetic parameters were capable of differentiating between normal breast tissue and benign and malignant tumors.
Keywords: DCE MRI; MR Multitasking; breast cancer; low-dose; quantitative imaging.
© 2021 International Society for Magnetic Resonance in Medicine.