LncRNA ZFAS1 inhibits triple-negative breast cancer by targeting STAT3

Biochimie. 2021 Mar:182:99-107. doi: 10.1016/j.biochi.2020.12.026. Epub 2021 Jan 9.

Abstract

Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer with fewer treatment options than other types of invasive breast cancer due to the loss of the estrogen, progesterone receptors and low levels of the HER2 protein, resulting in a poor prognosis for these patients. Here, we found that the expression of the lncRNA, ZFAS1, was significantly downregulated (∼3.0-fold) in blood samples of TNBC patients (n=40) compared to matched healthy controls (n=40). Functionally, silencing of ZFAS1 promoted cell proliferation and colonization of human MDA-MB-231 TNBC cells by inhibiting the expression levels of the cyclin-dependent kinase (CDK) inhibitors p21 (CDKN1A) and p27 (CDKN1B) compared to the scrambled siRNA control cells. Further, we found that downregulation of ZFAS1 led to decreased protein levels of the epithelial markers, E-cadherin, Claudin-1, and Zo-1, with increased protein levels of the mesenchymal markers, Slug and ZEB1. In addition, by utilizing the bioinformatic tools such as RAID v2.0 (RNA Interactome Database Version 2.0), AnnoLnc (Annotate human lncRNA database), and GEPIA (Gene Expression Profiling Interactive Analysis), we identified a strong negative correlation between ZFAS1 and signal transducer and activator of transcription 3 (STAT3) gene expression (R = -0.11, p-value = 0.0002). Further, we observed that decreased ZFAS1 expression significantly (p < 0.05) increased STAT3 and phosphorylated STAT3 (at Ser727 residue) protein levels in TNBC cells. The composite data indicate that ZFAS1 may function as a tumor-suppressor lncRNA with potential as a diagnostic/prognostic marker and may offer a new target for the treatment of TNBC patients.

Keywords: Biomarker; Breast cancer; Long non-coding RNA; TNBC; Triple-negative breast cancer; ZFAS1.

MeSH terms

  • Cell Line, Tumor
  • Female
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • Neoplasm Proteins / biosynthesis*
  • Neoplasm Proteins / genetics
  • RNA, Long Noncoding / biosynthesis*
  • RNA, Long Noncoding / genetics
  • RNA, Neoplasm / biosynthesis*
  • RNA, Neoplasm / genetics
  • STAT3 Transcription Factor / biosynthesis*
  • STAT3 Transcription Factor / genetics
  • Triple Negative Breast Neoplasms / genetics
  • Triple Negative Breast Neoplasms / metabolism*
  • Triple Negative Breast Neoplasms / pathology

Substances

  • Neoplasm Proteins
  • RNA, Long Noncoding
  • RNA, Neoplasm
  • STAT3 Transcription Factor
  • STAT3 protein, human
  • ZFAS1 long non-coding RNA, human