Measurable genomic changes in Mycobacterium avium subsp. hominissuis after long-term adaptation in Acanthamoeba lenticulata and reduced persistence in macrophages

J Bacteriol. 2021 Mar 15;203(6):e00257-20. doi: 10.1128/JB.00257-20. Epub 2021 Jan 11.

Abstract

Free-living amoebae are ubiquitous in aquatic environments and act as environmental reservoirs for nontuberculous mycobacteria. Mycobacterium avium subsp. hominissuis recovered from Acanthamoeba has been demonstrated to be more virulent in both human and murine models. Here, we investigate the persistence of M. avium subsp. hominissuis after short-term (2 weeks) and long-term (42 weeks) co-culture in Acanthamoeba lenticulata We hypothesize that A. lenticulata-adapted M. avium subsp. hominissuis demonstrate phenotypic and genomic changes facilitating intracellular persistence in naïve Acanthamoeba and human macrophages. M. avium subsp. hominissuis CFU in co-culture with A. lenticulata were recorded every 2 weeks up to 60 weeks. While A. lenticulata-associated M. avium subsp. hominissuis CFU did not significantly change across 60 weeks of co-culture, longer adaptation time in amoebae reduced colony size. Isolates recovered after 2 or 42 weeks of amoebae co-culture were referred as "early-adapted" and "late-adapted" M. avium subsp. hominissuis, respectively. Whole genome sequencing was performed on amoebae-adapted isolates with pan-genome comparisons to the original M. avium subsp. hominissuis isolate. Next, amoebae-adapted isolates were assessed for their persistence in A. lenticulata, A. castellanii, and human THP-1 macrophages. Multiplex cytokine/chemokine analyses were conducted on THP-1 culture supernatants. Compared to the original isolate, counts of late-adapted M. avium subsp. hominissuis were reduced in Acanthamoeba and contrary to expectations, lower counts were also observed in THP-1 macrophages with concomitant decrease in TNFa, IL-6, and MIP-1b suggesting that host adaptation may influence the inflammatory properties of M. avium IMPORTANCE Short-term interaction between Acanthamoeba and M. avium has been demonstrated to increase infectivity in human and murine models of infection, establishing the paradigm that amoebae "train" M. avium in the environment by selecting for phenotypes capable of enduring in human cells. We investigate this phenomenon further by determining the consequence of long-term amoebae adaptation on M. avium subsp. hominissuis persistence in host cells. We monitored genomic changes across long-term Acanthamoeba co-culture and report significant changes to the M. avium subsp. hominissuis genome in response to amoebae-adaptation and reduced colony size. Furthermore, we examined isolates co-cultured with A. lenticulata for 2 or 42 weeks and provide biological evidence that long-term co-culture in amoebae reduces M. avium persistence in human macrophages.