Engineering human hepato-biliary-pancreatic organoids from pluripotent stem cells

Nat Protoc. 2021 Feb;16(2):919-936. doi: 10.1038/s41596-020-00441-w. Epub 2021 Jan 11.

Abstract

Human organoids are emerging as a valuable resource to investigate human organ development and disease. The applicability of human organoids has been limited, partly due to the oversimplified architecture of the current technology, which generates single-tissue organoids that lack inter-organ structural connections. Thus, engineering organoid systems that incorporate connectivity between neighboring organs is a critical unmet challenge in an evolving organoid field. Here, we describe a protocol for the continuous patterning of hepatic, biliary and pancreatic (HBP) structures from a 3D culture of human pluripotent stem cells (PSCs). After differentiating PSCs into anterior and posterior gut spheroids, the two spheroids are fused together in one well. Subsequently, self-patterning of multi-organ (i.e., HBP) domains occurs within the boundary region of the two spheroids, even in the absence of any extrinsic factors. Long-term culture of HBP structures induces differentiation of the domains into segregated organs complete with developmentally relevant invagination and epithelial branching. This in-a-dish model of human hepato-biliary-pancreatic organogenesis provides a unique platform for studying human development, congenital disorders, drug development and therapeutic transplantation. More broadly, our approach could potentially be used to establish inter-organ connectivity models for other organ systems derived from stem cell cultures.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bile Ducts / cytology
  • Cell Culture Techniques / methods*
  • Cell Differentiation / physiology
  • Humans
  • Liver / cytology
  • Organogenesis / physiology
  • Organoids / cytology*
  • Organoids / metabolism
  • Pancreas / cytology
  • Pluripotent Stem Cells / cytology
  • Pluripotent Stem Cells / metabolism
  • Tissue Engineering / methods*